일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- sqlite
- urllib
- Linux
- pandas
- javascript
- PyQt5
- Unity
- port
- ASP
- python
- swift
- tensorflow
- MySQL
- IOS
- ubuntu
- flutter
- PyQt
- GIT
- 리눅스
- MS-SQL
- node.js
- 날짜
- PER
- 유니티
- 함수
- 라즈베리파이
- Excel
- 맛집
- 다이어트
- mssql
목록랭귀지/pandas (79)
아미(아름다운미소)
import pandas as pd# 초기 데이터프레임 생성df = pd.DataFrame({'ccc': [1, 2, 3]})# 조건에 따라 추가할 열 정의new_columns = {}if df['ccc'].max() > 2: new_columns['aaa'] = df['ccc']if df['ccc'].min() ccc aaa bbb0 1 1.0 21 2 2.0 42 3 3.0 6
import pandas as pd# 예시 데이터프레임 생성data = { 'a': ['value1_value2', '', 'value3_value4', 'value5_value6'], 'b': [1, 2, 3, 4]}df = pd.DataFrame(data)# a 컬럼이 빈 문자열이 아닐 경우 _ 기준으로 split하고 첫 번째 값 사용df['first_value'] = df['a'].apply(lambda x: x.split('_')[0] if x else None)print(df)
import pandas as pd# 예시 데이터프레임 생성data1 = {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}data2 = {'a': [2, 3, 4], 'b': [5, 6, 7], 'c': [8, 9, 10]}df = pd.DataFrame(data1)df2 = pd.DataFrame(data2)# df2에만 있는 값 찾기result = df2[~df2.set_index(['a', 'b', 'c']).index.isin(df.set_index(['a', 'b', 'c']).index)]print(result)
import pandas as pd# 예시 데이터프레임 생성data = { 'A': [1, 2, 'three', 4], 'B': [True, False, 7.2, 'eight'], 'C': [9, 10, 11, 12]}df = pd.DataFrame(data)# 데이터 타입 확인print("데이터 타입:")print(df.dtypes)# 타입이 다른 행 찾기non_string_A = df[~df['A'].apply(lambda x: isinstance(x, str))]non_int_C = df[~df['C'].apply(lambda x: isinstance(x, int))]non_bool_B = df[~df['B'].apply(lambda x: isinstance(x, bool))]pri..
sql case whenSELECT 이름, 성적, 출석률, CASE WHEN 성적 >= 90 AND 출석률 >= 90 THEN 'A' WHEN 성적 >= 80 AND 출석률 >= 80 THEN 'B' WHEN 성적 >= 70 AND 출석률 >= 70 THEN 'C' WHEN 성적 >= 60 AND 출석률 >= 60 THEN 'D' ELSE 'F' END AS 등급FROM 학생;np.whereimport pandas as pdimport numpy as np# 샘플 DataFrame 생성data = { '이름': ['학생1', '학생2', '학생3', '학생4', '학생..
import pandas as pddef fn_df(dict_df_types, df) -> pd.DataFrame: list_int = [k_ for (k_, v_) in dict_df_types.items() if (v_ != 'string') and (v_ != 'boolean') and (k_ in df.columns.to_list())] list_str = [k_ for (k_, v_) in dict_df_types.items() if (v_ == 'string') and (k_ in df.columns.to_list())] list_bool = [k_ for (k_, v_) in dict_df_types.items() if (v_ == 'boolean') and (k_ in df..
df = df.loc[~(df['column'].isnull())]
import pandas as pd# 예시 DataFrame 생성data = { 'a': [1, 1, 2, 2, 3], 'b': ['x', 'x', 'y', 'y', 'z'], 'c': ['p', 'q', 'p', 'q', 'p'], 'd': ['banana', 'apple', 'orange', 'grape', 'kiwi']}df = pd.DataFrame(data)# a 컬럼 드롭df = df.drop(columns=['a'])# b, c로 distinct한 후 d 컬럼의 알파벳 오름차순 첫 번째 값만 남기기result = df.sort_values('d').groupby(['b', 'c'], as_index=False).first()print(result)
import pandas as pd# 예시 DataFrame 생성data = { 'a': [1, 2, 3, 4], 'b': ['group1', 'group1', 'group2', 'group2'], 'c': [10, 20, 30, 40], 'd': ['T', 'F', 'T', 'F']}df = pd.DataFrame(data)# f 컬럼 초기화df['f'] = None# 그룹화하여 f 컬럼 채우기for name, group in df.groupby('b'): value = group.loc[group['d'] == 'T', 'c'] if not value.empty: df.loc[group.index, 'f'] = value.values[0]print(df)i..
import pandas as pd# 예시 데이터프레임 생성data = { 'a': ['A', 'A', 'B', 'B'], 'b': [1, 1, 2, 2], 'c': ['False', 'False', 'False', 'False'], # 문자열로 초기화 'd': ['apple', 'banana', 'cherry', 'date']}df = pd.DataFrame(data)# 그룹화groups = df.groupby(['a', 'b'])# c 컬럼이 모두 'False'인 그룹의 d 컬럼의 알파벳이 가장 빠른 행 찾기for name, group in groups: if (group['c'] == 'False').all(): # c 컬럼이 모두 'False'인 경우 #..