일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 유니티
- MySQL
- Unity
- python
- ASP
- PER
- ubuntu
- 리눅스
- 다이어트
- tensorflow
- flutter
- PyQt5
- 함수
- javascript
- Excel
- PyQt
- urllib
- swift
- 날짜
- IOS
- mssql
- node.js
- 라즈베리파이
- Linux
- MS-SQL
- port
- 맛집
- sqlite
- GIT
- pandas
목록AI/Scikit-Learn (2)
아미(아름다운미소)
인공 지능(AI)은 학습, 문제 해결, 패턴 인식 등과 같이 주로 인간 지능과 연결된 인지 문제를 해결하는 데 주력하는 컴퓨터 공학 분야입니다. 보통 "AI"로 줄여서 부르는 인공 지능은 로봇 공학이나 미래의 모습을 내포하고 있을 수도 있지만, AI는 공상 과학 소설에 나오는 작은 로봇을 넘어 첨단 컴퓨터 공학의 현실이 되고 있습니다. 최근에 통계 컴퓨팅 효율성이 개선되면서 베이지안이 "기계 학습"이라는 분야에서 몇 가지 영역을 성공적으로 발전시킬 수 있게 되었습니다. 이와 마찬가지로 네트워크 컴퓨팅이 발전하면서 연결주의자도 "딥 러닝"이라는 이름으로 하위 분야를 더욱 발전시킬 수 있게 되었습니다. 기계 학습(ML)과 딥 러닝(DL)은 모두 인공 지능 분야에서 파생된 컴퓨터 과학 분야입니다.이러한 기법은..
scikit-learn 소개 scikit-learn은 2007년 구글 썸머 코드에서 처음 구현됐으며 현재 파이썬으로 구현된 가장 유명한 기계 학습 오픈 소스 라이브러리입니다. scikit-learn의 장점은 라이브러리 외적으로는 scikit 스택을 사용하고 있기 때문에 다른 라이브러리와의 호환성이 좋고 내적으로는 통일된 인터페이스를 가지고 있기 때문에 매우 간단하게 여러 기법을 적용할 수 있어 쉽고 빠르게 최상의 결과를 얻을 수 있습니다. 라이브러리의 구성은 크게 지도 학습, 비지도 학습, 모델 선택 및 평가, 데이터 변환으로 나눌 수 있습니다. 지도 학습에는 서포트 벡터 머신, 나이브 베이즈(Naïve Bayes), 결정 트리(Decision Tree)등이 있으며 비지도 학습에는 군집화, 이상치 검출 ..